f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z
↳ QTRS
↳ DependencyPairsProof
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z
H3(g1(x), y, z) -> H3(x, y, z)
H3(g1(x), y, z) -> F2(y, h3(x, y, z))
F2(g1(x), g1(y)) -> H3(g1(y), x, g1(y))
F2(g1(x), a) -> F2(x, g1(a))
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
H3(g1(x), y, z) -> H3(x, y, z)
H3(g1(x), y, z) -> F2(y, h3(x, y, z))
F2(g1(x), g1(y)) -> H3(g1(y), x, g1(y))
F2(g1(x), a) -> F2(x, g1(a))
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(g1(x), a) -> F2(x, g1(a))
Used ordering: Polynomial interpretation [21]:
H3(g1(x), y, z) -> H3(x, y, z)
H3(g1(x), y, z) -> F2(y, h3(x, y, z))
F2(g1(x), g1(y)) -> H3(g1(y), x, g1(y))
POL(F2(x1, x2)) = 2·x2
POL(H3(x1, x2, x3)) = 2·x3
POL(a) = 2
POL(f2(x1, x2)) = x2
POL(g1(x1)) = 0
POL(h3(x1, x2, x3)) = x3
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
f2(g1(x), a) -> f2(x, g1(a))
h3(a, y, z) -> z
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
F2(g1(x), g1(y)) -> H3(g1(y), x, g1(y))
H3(g1(x), y, z) -> F2(y, h3(x, y, z))
H3(g1(x), y, z) -> H3(x, y, z)
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F2(g1(x), g1(y)) -> H3(g1(y), x, g1(y))
H3(g1(x), y, z) -> F2(y, h3(x, y, z))
Used ordering: Polynomial interpretation [21]:
H3(g1(x), y, z) -> H3(x, y, z)
POL(F2(x1, x2)) = 2·x1
POL(H3(x1, x2, x3)) = 2 + 2·x2
POL(a) = 1
POL(f2(x1, x2)) = 2 + x1 + x2
POL(g1(x1)) = 2 + 2·x1
POL(h3(x1, x2, x3)) = 2 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
H3(g1(x), y, z) -> H3(x, y, z)
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
H3(g1(x), y, z) -> H3(x, y, z)
POL(H3(x1, x2, x3)) = 2·x1
POL(g1(x1)) = 1 + 2·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f2(a, g1(y)) -> g1(g1(y))
f2(g1(x), a) -> f2(x, g1(a))
f2(g1(x), g1(y)) -> h3(g1(y), x, g1(y))
h3(g1(x), y, z) -> f2(y, h3(x, y, z))
h3(a, y, z) -> z